Unique Paths II 115
Question
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Notice
m and n will be at most 100.
Example
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Solution
做法和Unique PathsI一样,不同点在于当遇到障碍物的时候直接将该点路径数设为0。
初始化:
uniquePath[0][0] = 1,
当(i,0)不为障碍物时
uniquePath[i][0]=uniquePath[i-1][0], 否则等于0
当(0,j)不为障碍物时
uniquePath[0][j]=uniquePath[0][j-1],否则等于0
状态函数:
uniquePath[i][j]=uniquePath[i-1][j]+uniquePath[i][j-1] 当(i,j)不为障碍物时
uniquePath[i][j]=0 当(i,j)为障碍物时
代码如下:
public class Solution {
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
// write your code here
if(obstacleGrid == null || obstacleGrid.length == 0){
return 0;
}
if(obstacleGrid[0] == null || obstacleGrid[0].length == 0){
return 0;
}
if(obstac leGrid[0][0] == 1){
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] uniquePath2 = new int[m][n];
uniquePath2[0][0] = 1;
for(int i = 1; i < m; i++){
if(obstacleGrid[i][0] == 0){
uniquePath2[i][0] = 1;
}else{
break;
}
}
for(int j = 1; j < n; j++){
if(obstacleGrid[0][j] == 0){
uniquePath2[0][j] = 1;
}else{
break;
}
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
if(obstacleGrid[i][j] != 1){
uniquePath2[i][j] = uniquePath2[i][j - 1] + uniquePath2[i - 1][j];
}else{
uniquePath2[i][j] = 0;
}
}
}
return uniquePath2[m - 1][n - 1];
}
}