Unique Paths 114
Question
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Notice
m and n will be at most 100.
Solution
这题和minimum path sum一样要求从左上走到右下,只是这次要求的是一共有多少条路径。和climbling stairs的思想一样。
uniquePath[i][j]表示从(0,0)到(i,j)的路径数之和。
初始化:
uniquePath[0][0] = 1,
uniquePath[i][0]=uniquePath[i-1][0],
uniquePath[0][j]=uniquePath[0][j-1]
状态函数:
uniquePath[i][j]=uniquePath[i-1][j]+uniquePath[i][j-1]
即从(0,0)到达(i,j)的路径数为从(0,0)到达其左边和上面的点的路径数之和。
代码如下:
public class Solution {
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
public int uniquePaths(int m, int n) {
// write your code here
if(m <= 0 || n <= 0){
return 0;
}
int[][] uniquePath = new int[m][n];
uniquePath[0][0] = 1;
for(int i = 1; i < m; i++){
uniquePath[i][0] = uniquePath[i - 1][0];
}
for(int j = 1; j < n; j++){
uniquePath[0][j] = uniquePath[0][j - 1];
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
uniquePath[i][j] = uniquePath[i][j - 1] + uniquePath[i - 1][j];
}
}
return uniquePath[m - 1][n - 1];
}
}